Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
1.
BMC Microbiol ; 24(1): 77, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459514

RESUMO

BACKGROUND: Autolysis by cellular peptidoglycan hydrolases (PGH) is a well-known phenomenon in bacteria. During food fermentation, autolysis of starter cultures can exert an accelerating effect, as described in many studies on cheese ripening. In contrast, very little is known about autolysis of starter cultures used in other fermentations. Staphylococcus (S.) carnosus is often used in raw sausage fermentations, contributing to nitrate reduction and flavor formation. In this study, we analyzed the influence of PGHs of the strains S. carnosus TMW 2.146 and S. carnosus TMW 2.2525 on their autolytic behavior. The staphylococcal major autolysin (Atl), a bifunctional enzyme with an N-acetylmuramoyl-L-alanine amidase and a glucosaminidase as an active site, is assumed to be the enzyme by which autolysis is mainly mediated. RESULTS: AtlC mutant strains showed impaired growth and almost no autolysis compared to their respective wild-type strains. Light microscopy and scanning electron microscopy showed that the mutants could no longer appropriately separate from each other during cell division, resulting in the formation of cell clusters. The surface of the mutants appeared rough with an irregular morphology compared to the smooth cell surfaces of the wild-types. Moreover, zymograms showed that eight lytic bands of S. carnosus, with a molecular mass between 140 and 35 kDa, are processed intermediates of AtlC. It was noticed that additional bands were found that had not been described in detail before and that the banding pattern changes over time. Some bands disappear entirely, while others become stronger or are newly formed. This suggests that AtlC is degraded into smaller fragments over time. A second knockout was generated for the gene encoding a N-acetylmuramoyl-L-alanine amidase domain-containing protein. Still, no phenotypic differences could be detected in this mutant compared to the wild-type, implying that the autolytic activity of S. carnosus is mediated by AtlC. CONCLUSIONS: In this study, two knockout mutants of S. carnosus were generated. The atlC mutant showed a significantly altered phenotype compared to the wild-type, revealing AtlC as a key factor in staphylococcal autolysis. Furthermore, we show that Atl is degraded into smaller fragments, which are still cell wall lytic active.


Assuntos
N-Acetil-Muramil-L-Alanina Amidase , Staphylococcus , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo
2.
mBio ; 15(2): e0254023, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38275913

RESUMO

Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant Staphylococcus aureus is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of S. aureus-infected zebrafish larvae with MEndoB provided evidence for its in vivo effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced S. aureus loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with in vitro, ex vivo, and in vivo results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Peptidoglicano , Peixe-Zebra , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/uso terapêutico , Sepse/tratamento farmacológico
3.
Int J Biol Macromol ; 256(Pt 2): 128468, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035962

RESUMO

Bacillus amyloliquefaciens (BA) is considered as an important industrial strain for heterologous proteins production. However, its severe autolytic behavior leads to reduce the industrial production capacity of the chassis cells. In this study, we aimed to evaluate the autolysis of N-acetylmuranyl-L-alanine amidase in BA TCCC11018, and further slowed down the cell lysis for improved the heterologous protein production by a series of modifications. Firstly, we identified six N-acetylmuramic acid-L-alanines by bioinformatics, and analyzed the transcriptional levels at different culture time points by transcriptome and quantitative real-time PCR. Then, by establishing an efficient CRISPR-nCas9 gene editing method, N-acetylmuramic acid-L-alanine genes were knocked out or overexpressed to verify its effect on cell lysis. Then, by single or tandem knockout N-acetylmuramic acid-L-alanines, it was determined that the reasonable modification of LytH and CwlC1 can slow down cell lysis. After 48 h of culture, the autolysis rate of the mutant strain BA ΔlytH-cwlC1 decreased by 4.83 %, and the amylase activity reached 176 U/mL, which was 76.04 % higher than that of the control strain BA Δupp. The results provide a reference for mining the functional characteristics of autolysin in Bacillus spp., and provide from this study reveal valuable insights delaying the cell lysis and increasing heterologous proteins production.


Assuntos
Bacillus amyloliquefaciens , N-Acetil-Muramil-L-Alanina Amidase , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Ácidos Murâmicos , Alanina
4.
Viruses ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38005870

RESUMO

Lactococcus lactis and Lactococcus cremoris are broadly utilized as starter cultures for fermented dairy products and are inherently impacted by bacteriophage (phage) attacks in the industrial environment. Consequently, the generation of bacteriophage-insensitive mutants (BIMs) is a standard approach for addressing phage susceptibility in dairy starter strains. In this study, we characterized spontaneous BIMs of L. lactis DGCC12699 that gained resistance against homologous P335-like phages. Phage resistance was found to result from mutations in the YjdB domain of yccB, a putative autolysin gene. We further observed that alteration of a fused tail-associated lysin-receptor binding protein (Tal-RBP) in the phage restored infectivity on the yccB BIMs. Additional investigation found yccB homologs to be widespread in L. lactis and L. cremoris and that different yccB homologs are highly correlated with cell wall polysaccharide (CWPS) type/subtype. CWPS are known lactococcal phage receptors, and we found that truncation of a glycosyltransferase in the cwps operon also resulted in resistance to these P335-like phages. However, characterization of the CWPS mutant identified notable differences from the yccB mutants, suggesting the two resistance mechanisms are distinct. As phage resistance correlated with yccB mutation has not been previously described in L. lactis, this study offers insight into a novel gene involved in lactococcal phage sensitivity.


Assuntos
Bacteriófagos , Lactococcus lactis , Bacteriófagos/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Mutação , Polissacarídeos/metabolismo
5.
Microbiol Spectr ; 11(6): e0535622, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795989

RESUMO

IMPORTANCE: Human listeriosis is caused by consuming foods contaminated with the bacterial pathogen Listeria monocytogenes, leading to the development of a severe and life-threatening foodborne illness. Detection of L. monocytogenes present in food and food processing environments is crucial for preventing Listeria infection. The L. monocytogenes peptidoglycan hydrolase IspC anchors non-covalently to the bacterial surface through its C-terminal cell wall-binding domain (CWBD), CWBDIspC. This study explored the surface binding property of CWBDIspC to design, construct, characterize, and assess an affinity molecular probe for detecting L. monocytogenes. CWBDIspC recognized a cell wall ligand lipoteichoic acid that remains evenly displayed and mostly unoccupied on the bacterial surface for interaction with the exogenously added CWBDIspC. CWBDIspC, when fused to the enhanced green fluorescent protein reporter or covalently conjugated onto magnetic beads, exhibited the functionality as an antibody alternative for rapid detection and efficient separation of the pathogen.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Listeria monocytogenes/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/análise , N-Acetil-Muramil-L-Alanina Amidase/química , Listeriose/microbiologia , Parede Celular/metabolismo
6.
mBio ; 14(5): e0176023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37768080

RESUMO

IMPORTANCE: In order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall- cell wall hydrolases-has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in Bacillus subtilis and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of B. subtilis in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the ∆40 strain is a research tool to characterize hydrolases, using it to identify three "helper" hydrolases that act in certain stress conditions.


Assuntos
Bacillus subtilis , Hidrolases , Hidrolases/genética , Hidrolases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/metabolismo
7.
Biochemistry ; 62(20): 2902-2907, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37699513

RESUMO

RNA thermometers are noncoding RNA structures located in the 5' untranslated regions (UTRs) of genes that regulate gene expression through temperature-dependent conformational changes. The fourU class of RNA thermometers contains a specific motif in which four consecutive uracil nucleotides are predicted to base pair with the Shine-Dalgarno (SD) sequence in a stem. We employed a bioinformatic search to discover a fourU RNA thermometer in the 5'-UTR of the blyA gene of the Bacillus subtilis phage SPßc2, a bacteriophage that infects B. subtilis 168. blyA encodes an autolysin enzyme, N-acetylmuramoyl-l-alanine amidase, which is involved in the lytic life cycle of the SPß prophage. We have biochemically validated the predicted RNA thermometer in the 5'-UTR of the blyA gene. Our study suggests that RNA thermometers may play an underappreciated yet critical role in the lytic life cycle of bacteriophages.


Assuntos
Fagos Bacilares , Bacillus subtilis , Regiões 5' não Traduzidas , Fagos Bacilares/genética , Bacillus subtilis/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , Prófagos/genética
8.
Anaerobe ; 83: 102769, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544355

RESUMO

OBJECTIVE: Clostridium perfringens causes food poisoning and gas gangrene, a serious wound-associated infection. C. perfringens cells adhere to collagen via fibronectin (Fn). We investigated whether the peptidoglycan hydrolase of C. perfringens, i.e., autolysin (Acp), is implicated in Fn binding to C. perfringens cells. METHODS: This study used recombinant Acp fragments, human Fn and knockout mutants (C. perfringens 13 acp::erm and HN13 ΔfbpC ΔfbpD). Ligand blotting, Western blotting analysis, and complementation tests were performed. The Fn-binding activity of each mutant was evaluated by ELISA. RESULTS: From an Fn-binding assay using recombinant Acp fragments, Fn was found to bind to the catalytic domain of Acp. In mutant cells lacking Acp, Fn binding was significantly decreased, but was restored by the complementation of the acp gene. There are three known kinds of Fn-binding proteins in C. perfringens: FbpC, FbpD, and glyceraldehyde-3-phosphate dehydrogenase. We found no difference in Fn-binding activity between the mutant cells lacking both FbpC and FbpD (SAK3 cells) and the wild-type cells, indicating that these Fn-binding proteins are not involved in Fn binding to C. perfringens cells. CONCLUSIONS: We found that the Acp is an Fn-binding protein that acts as an Fn receptor on the surface of C. perfringens cells.


Assuntos
Clostridium perfringens , Gangrena Gasosa , Humanos , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Integrina alfa5beta1/metabolismo , Ligação Proteica , Proteínas de Transporte/metabolismo
9.
Nat Commun ; 14(1): 4095, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433794

RESUMO

Proteins with a catalytically inactive LytM-type endopeptidase domain are important regulators of cell wall-degrading enzymes in bacteria. Here, we study their representative DipM, a factor promoting cell division in Caulobacter crescentus. We show that the LytM domain of DipM interacts with multiple autolysins, including the soluble lytic transglycosylases SdpA and SdpB, the amidase AmiC and the putative carboxypeptidase CrbA, and stimulates the activities of SdpA and AmiC. Its crystal structure reveals a conserved groove, which is predicted to represent the docking site for autolysins by modeling studies. Mutations in this groove indeed abolish the function of DipM in vivo and its interaction with AmiC and SdpA in vitro. Notably, DipM and its targets SdpA and SdpB stimulate each other's recruitment to midcell, establishing a self-reinforcing cycle that gradually increases autolytic activity as cytokinesis progresses. DipM thus coordinates different peptidoglycan-remodeling pathways to ensure proper cell constriction and daughter cell separation.


Assuntos
Caulobacter crescentus , N-Acetil-Muramil-L-Alanina Amidase , Humanos , N-Acetil-Muramil-L-Alanina Amidase/genética , Caulobacter crescentus/genética , Retroalimentação , Constrição , Autólise
10.
Curr Opin Microbiol ; 74: 102326, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37279609

RESUMO

For bacteria to increase in size, they need to enzymatically expand their cell envelopes, and more concretely their peptidoglycan cell wall. A major task of growth is to increase intracellular space for the accumulation of macromolecules, notably proteins, RNA, and DNA. Here, we review recent progress in our understanding of how cells coordinate envelope growth with biomass growth, focusing on elongation of rod-like bacteria. We first describe the recent discovery that surface area, but not cell volume, increases in proportion to mass growth. We then discuss how this relation could possibly be implemented mechanistically, reviewing the role of envelope insertion for envelope growth. Since cell-wall expansion requires the well-controlled activity of autolysins, we finally review recent progress in our understanding of autolysin regulation.


Assuntos
Proteínas de Bactérias , N-Acetil-Muramil-L-Alanina Amidase , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Membrana Celular/metabolismo , Ciclo Celular , Peptidoglicano/metabolismo
11.
Nat Commun ; 14(1): 3338, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286542

RESUMO

Secreted proteins are one of the direct molecular mechanisms by which microbiota influence the host, thus constituting a promising field for drug discovery. Here, through bioinformatics-guided screening of the secretome of clinically established probiotics from Lactobacillus, we identify an uncharacterized secreted protein (named LPH here) that is shared by most of these probiotic strains (8/10) and demonstrate that it protects female mice from colitis in multiple models. Functional studies show that LPH is a bi-functional peptidoglycan hydrolase with both N-Acetyl-ß-D-muramidase and DL-endopeptidase activities that can generate muramyl dipeptide (MDP), a NOD2 ligand. Different active site mutants of LPH in combination with Nod2 knockout female mice confirm that LPH exerts anti-colitis effects through MDP-NOD2 signaling. Furthermore, we validate that LPH can also exert protective effects on inflammation-associated colorectal cancer in female mice. Our study reports a probiotic enzyme that enhances NOD2 signaling in vivo in female mice and describes a molecular mechanism that may contribute to the effects of traditional Lactobacillus probiotics.


Assuntos
Colite , Probióticos , Camundongos , Feminino , Animais , Ligantes , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo
12.
PLoS Pathog ; 19(4): e1011306, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018381

RESUMO

As a facultative intracellular pathogen, Salmonella enterica serovar Typhimurium is one of the leading causes of food-borne diseases in humans. With the ingestion of fecal contaminated food or water, S. Typhimurium reaches the intestine. Here, the pathogen efficiently invades intestinal epithelial cells of the mucosal epithelium by the use of multiple virulence factors. Recently, chitinases have been described as emerging virulence factors of S. Typhimurium that contribute to the attachment and invasion of the intestinal epithelium, prevent immune activation, and modulate the host glycome. Here we find that the deletion of chiA leads to diminished adhesion and invasion of polarized intestinal epithelial cells (IEC) compared to wild-type S. Typhimurium. Interestingly, no apparent impact on interaction was detected when using non-polarized IEC or HeLa epithelial cells. In concordance, we demonstrate that chiA gene and ChiA protein expression was solely induced when bacteria gain contact with polarized IEC. The induction of chiA transcripts needs the specific activity of transcriptional regulator ChiR, which is co-localized with chiA in the chitinase operon. Moreover, we established that after chiA is induced, a major portion of the bacterial population expresses chiA, analyzed by flow cytometry. Once expressed, we found ChiA in the bacterial supernatants using Western blot analyses. ChiA secretion was completely abolished when accessory genes within the chitinase operon encoding for a holin and a peptidoglycan hydrolase were deleted. Holins, peptidoglycan hydrolases, and large extracellular enzymes in close proximity have been described as components of the bacterial holin/peptidoglycan hydrolase-dependent protein secretion system or Type 10 Secretion System. Overall, our results confirm that chitinase A is an important virulence factor, tightly regulated by ChiR, that promotes adhesion and invasion upon contact with polarized IEC and is likely secreted by a Type 10 Secretion System (T10SS).


Assuntos
Quitinases , Fatores de Virulência , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Salmonella typhimurium , Quitinases/genética , Quitinases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sorogrupo , Mucosa Intestinal/microbiologia , Sistemas de Secreção Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
13.
Commun Biol ; 6(1): 428, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072531

RESUMO

Control of cell size and morphology is of paramount importance for bacterial fitness. In the opportunistic pathogen Enterococcus faecalis, the formation of diplococci and short cell chains facilitates innate immune evasion and dissemination in the host. Minimisation of cell chain size relies on the activity of a peptidoglycan hydrolase called AtlA, dedicated to septum cleavage. To prevent autolysis, AtlA activity is tightly controlled, both temporally and spatially. Here, we show that the restricted localization of AtlA at the septum occurs via an unexpected mechanism. We demonstrate that the C-terminal LysM domain that allows the enzyme to bind peptidoglycan is essential to target this enzyme to the septum inside the cell before its translocation across the membrane. We identify a membrane-bound cytoplasmic protein partner (called AdmA) involved in the recruitment of AtlA via its LysM domains. This work reveals a moonlighting role for LysM domains, and a mechanism evolved to restrict the subcellular localization of a potentially lethal autolysin to its site of action.


Assuntos
Enterococcus faecalis , Peptidoglicano , Enterococcus faecalis/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Separação Celular
14.
Proc Natl Acad Sci U S A ; 120(12): e2301414120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920922

RESUMO

Peptidoglycan hydrolases, or autolysins, play a critical role in cell wall remodeling and degradation, facilitating bacterial growth, cell division, and cell separation. In Staphylococcus aureus, the so-called "major" autolysin, Atl, has long been associated with host adhesion; however, the molecular basis underlying this phenomenon remains understudied. To investigate, we used the type V glycopeptide antibiotic complestatin, which binds to peptidoglycan and blocks the activity of autolysins, as a chemical probe of autolysin function. We also generated a chromosomally encoded, catalytically inactive variant of the Atl enzyme. Autolysin-mediated peptidoglycan hydrolysis, in particular Atl-mediated daughter cell separation, was shown to be critical for maintaining optimal surface levels of S. aureus cell wall-anchored proteins, including the fibronectin-binding proteins (FnBPs) and protein A (Spa). As such, disrupting autolysin function reduced the affinity of S. aureus for host cell ligands, and negatively impacted early stages of bacterial colonization in a systemic model of S. aureus infection. Phenotypic studies revealed that Spa was sequestered at the septum of complestatin-treated cells, highlighting that autolysins are required to liberate Spa during cell division. In summary, we reveal the hydrolytic activities of autolysins are associated with the surface display of S. aureus cell wall-anchored proteins. We demonstrate that by blocking autolysin function, type V glycopeptide antibiotics are promising antivirulence agents for the development of strategies to control S. aureus infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/química , Peptidoglicano/metabolismo , Hidrólise , Antibacterianos/metabolismo , Glicopeptídeos/metabolismo , Infecções Estafilocócicas/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
15.
Braz J Microbiol ; 54(2): 609-618, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36973582

RESUMO

Shigellosis remains a worldwide health problem due to the lack of vaccines and the emergence of antibiotic-resistant strains. Shigella (S.) dysenteriae has rigid peptidoglycan (PG), and its tight regulation of biosynthesis and remodeling is essential for bacterial integrity. Lytic transglycosylases are highly conserved PG autolysins in bacteria that play essential roles in bacterial growth. However, their precise functions are obscure. We aimed to identify, clone, and express MltC, a unique autolysin in Escherichia (E.) coli C41 strain. The purification of recombinant MltC protein was performed using affinity chromatography and size-exclusion chromatography methods. The PG enzymatic activity of MltC was investigated using Zymogram and Fluorescein isothiocyanate (FITC)-labeled PG assays. Also, we aimed to detect its localization in bacterial fractions (cytoplasm and membrane) by western blot using specific polyclonal anti-MltC antibodies and its probable partners using immunoprecipitation and mass spectrometry applications. Purified MltC showed autolysin activity. Native MltC showed various locations in S. dysenteriae cells during different growth phases. In the Lag and early stationary phases, MltC was not found in cytoplasm and membrane fractions. However, it was detected in cytoplasm and membrane fractions during the exponential phase. In the late stationary phase, MltC was expressed in the membrane fraction only. Different candidate protein partners of MltC were identified that could be essential for bacterial growth and pathogenicity. This is the first study to suggest that MltC is indeed autolysin and could be a new drug target for the treatment of shigellosis by understanding its biological functions.


Assuntos
Disenteria Bacilar , Peptidoglicano Glicosiltransferase , Humanos , Peptidoglicano Glicosiltransferase/metabolismo , Shigella dysenteriae/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo
16.
PLoS One ; 18(3): e0282843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36897919

RESUMO

Streptococcus pneumoniae is an important cause of fatal pneumonia in humans. These bacteria express virulence factors, such as the toxins pneumolysin and autolysin, that drive host inflammatory responses. In this study we confirm loss of pneumolysin and autolysin function in a group of clonal pneumococci that have a chromosomal deletion resulting in a pneumolysin-autolysin fusion gene Δ(lytA'-ply')593. The Δ(lytA'-ply')593 pneumococci strains naturally occur in horses and infection is associated with mild clinical signs. Here we use immortalized and primary macrophage in vitro models, which include pattern recognition receptor knock-out cells, and a murine acute pneumonia model to show that a Δ(lytA'-ply')593 strain induces cytokine production by cultured macrophages, however, unlike the serotype-matched ply+lytA+ strain, it induces less tumour necrosis factor α (TNFα) and no interleukin-1ß production. The TNFα induced by the Δ(lytA'-ply')593 strain requires MyD88 but, in contrast to the ply+lytA+ strain, is not reduced in cells lacking TLR2, 4 or 9. In comparison to the ply+lytA+ strain in a mouse model of acute pneumonia, infection with the Δ(lytA'-ply')593 strain resulted in less severe lung pathology, comparable levels of interleukin-1α, but minimal release of other pro-inflammatory cytokines, including interferon-γ, interleukin-6 and TNFα. These results suggest a mechanism by which a naturally occurring Δ(lytA'-ply')593 mutant strain of S. pneumoniae that resides in a non-human host has reduced inflammatory and invasive capacity compared to a human S. pneumoniae strain. These data probably explain the relatively mild clinical disease in response to S. pneumoniae infection seen in horses in comparison to humans.


Assuntos
Streptococcus pneumoniae , Fator de Necrose Tumoral alfa , Animais , Camundongos , Cavalos , Fator de Necrose Tumoral alfa/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , Virulência/genética , Sorogrupo , Estreptolisinas , Proteínas de Bactérias/genética , Imunidade
17.
PLoS Biol ; 21(1): e3001990, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716340

RESUMO

Competence development in the human pathogen Streptococcus pneumoniae controls several features such as genetic transformation, biofilm formation, and virulence. Competent bacteria produce so-called "fratricins" such as CbpD that kill noncompetent siblings by cleaving peptidoglycan (PGN). CbpD is a choline-binding protein (CBP) that binds to phosphorylcholine residues found on wall and lipoteichoic acids (WTA and LTA) that together with PGN are major constituents of the pneumococcal cell wall. Competent pneumococci are protected against fratricide by producing the immunity protein ComM. How competence and fratricide contribute to virulence is unknown. Here, using a genome-wide CRISPRi-seq screen, we show that genes involved in teichoic acid (TA) biosynthesis are essential during competence. We demonstrate that LytR is the major enzyme mediating the final step in WTA formation, and that, together with ComM, is essential for immunity against CbpD. Importantly, we show that key virulence factors PspA and PspC become more surface-exposed at midcell during competence, in a CbpD-dependent manner. Together, our work supports a model in which activation of competence is crucial for host adherence by increased surface exposure of its various CBPs.


Assuntos
Streptococcus pneumoniae , Fatores de Virulência , Humanos , Streptococcus pneumoniae/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Colina/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
18.
Biochemistry ; 62(2): 330-344, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35060722

RESUMO

The therapeutic use of bacteriophage-encoded endolysins as enzybiotics has increased significantly in recent years due to the emergence of antibiotic resistant bacteria. Phage endolysins lyse the bacteria by targeting their cell wall. Various engineering strategies are commonly used to modulate or enhance the utility of therapeutic enzymes. This study employed a structure-guided mutagenesis approach to engineer a T7 bacteriophage endolysin (T7L) with enhanced amidase activity and lysis potency via replacement of a noncatalytic gating residue (His 37). Two H37 variants (H37A and H37K) were designed and characterized comprehensively using integrated biophysical and biochemical techniques to provide mechanistic insights into their structure-stability-dynamics-activity paradigms. Among the studied proteins, cell lysis data suggested that the obtained H37A variant exhibits amidase activity (∼35%) enhanced compared to that of wild-type T7 endolysin (T7L-WT). In contrast to this, the H37K variant is highly unstable, prone to aggregation, and less active. Comparison of the structure and dynamics of the H37A variant to those of T7L-WT evidenced that the alteration at the site of H37 resulted in long-range structural perturbations, attenuated the conformational heterogeneity, and quenched the microsecond to millisecond time scale motions. Stability analysis confirmed the altered stability of H37A compared to that of its WT counterpart. All of the obtained results established that the H37A variant enhances the lysis activity by regulating the stability-activity trade-off. This study provided deeper atomic level insights into the structure-function relationships of endolysin proteins, thus aiding researchers in the rational design of engineered endolysins with enhanced therapeutic properties.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Bacteriófago T7/genética , Endopeptidases/química
19.
World J Microbiol Biotechnol ; 39(1): 31, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454347

RESUMO

The paper suggests a rapid and efficient technique for isolation of genomic DNA from the bacteria of the genus Bacillus, which is based on the hydrolysis of cell wall peptidoglycan by a cocktail of peptidoglycan hydrolases of different type (L,D-peptidase and N-acetylmuramidase). The comparing of conventional techniques for the isolation of genomic DNA using: a microwave treatment; a treatment with ionic detergents (SDS, CTAB) or a chaotropic agent (GuSCN); and enzymatic hydrolysis (nonspecific, with proteinase K, or specific, with peptidoglycan hydrolases) conducted on Bacillus megaterium, B. subtilis, B. licheniformis, B. cereus showed that the most effective ones were techniques based on the specific hydrolysis of cell wall peptidoglycan. The highest efficiency of hydrolysis was obtained with an enzyme cocktail consisted of hen egg muramidase (HEWL) and highly active phage-specific L,D-peptidase EndoRB49 revealed a pronounced synergism between the peptidase and the muramidase. The cocktail treatment of Bacillus cells could be reduced to 10 min without affecting the yield of nucleic acids. The quality of DNA preparations was assessed using the restriction and PCR assays, as well as agarose gel electrophoresis. Using peptidoglycan hydrolases of different type, which have a good synergy, makes the technique very efficient and perspective for the application when rapid and effective disintegration of cell wall is crucial to avoid adverse effects of macromolecular denaturation.


Assuntos
Bacillus megaterium , N-Acetil-Muramil-L-Alanina Amidase , Animais , Feminino , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano , Muramidase , Galinhas , DNA , Bacillus megaterium/genética , Peptídeo Hidrolases , Genômica
20.
Proc Natl Acad Sci U S A ; 119(50): e2214599119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469781

RESUMO

The bacterial cell wall is a multi-layered mesh, whose major component is peptidoglycan (PG), a sugar polymer cross-linked by short peptide stems. During cell division, a careful balance of PG synthesis and degradation, precisely coordinated both in time and space, is necessary to prevent uncontrolled destruction of the cell wall. In Corynebacteriales, the D,L endopeptidase RipA has emerged as a major PG hydrolase for cell separation, and RipA defaults have major implications for virulence of the human pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. However, the precise mechanisms by which RipA mediates cell separation remain elusive. Here we report phylogenetic, biochemical, and structural analysis of the Corynebacterium glutamicum homologue of RipA, Cg1735. The crystal structures of full-length Cg1735 in two different crystal forms revealed the C-terminal NlpC/P60 catalytic domain obtruded by its N-terminal conserved coiled-coil domain, which locks the enzyme in an autoinhibited state. We show that this autoinhibition is relieved by the extracellular core domain of the transmembrane septal protein Cg1604. The crystal structure of Cg1604 revealed a (ß/α) protein with an overall topology similar to that of receiver domains from response regulator proteins. The atomic model of the Cg1735-Cg1604 complex, based on bioinformatical and mutational analysis, indicates that a conserved, distal-membrane helical insertion in Cg1604 is responsible for Cg1735 activation. The reported data provide important insights into how intracellular cell division signal(s), yet to be identified, control PG hydrolysis during RipA-mediated cell separation in Corynebacteriales.


Assuntos
Actinomycetales , Proteínas de Bactérias , Actinomycetales/citologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...